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Introduction 

Adipocytes are highly specialized cells that play a crucial 
role in energy balance. They provide the ability to syn- 
thesize and store fat during times of positive energy 
balance in preparation for periods of nutritional depri- 
vation. However, obesity that results from excess accu- 
mulation of adipose tissue has become a major health 
problem in Western society. Adipose tissue develop- 
ment may occur not only during the embryonic stage 
but also in the adult, where an increase in fat cell number 
has been documented. |-4 The development of adipose 
tissue involves the commitment of multipotential mes- 
enchymal stem cells to preadipocytes, and their subse- 
quent differentiation to mature adipocytes with a 
distinct pattern of tissue-specific expression of adipocyte 
genes. 

Preadipocyte differentiation in culture 

The establishment of clonal adipogenic cell lines, such 
as 3T3-L1, 3T3-F442A, ob17, and TA1 cells? -9 have 
made possible the study of the molecular mechanisms 
underlying adipose tissue development. These cells ex- 
hibit the properties of fibroblasts during growth. At 
confluence and under appropriate culture conditions, 
cells withdraw from the cell cycle and spontaneously 
differentiate into adipocytes. After treatment of the 
cells with various hormones and agents, differentiation, 
which is defined as the acquisition of the biochemical 
profile and rounded lipid-filled morphology of typical 
mature adipocytes, occurs within 7-10 days. Studies 
utilizing preadipocyte cell lines have demonstrated that 
adipocyte conversion is accompanied by significant al- 
terations in the level of over 100 proteins. ~°'~ Cells ex- 
press adipocyte-specific genes, including those encoding 
lipogenic and lipolytic enzymes, as well as those in- 
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volved in nutrient transport and hormone respon- 
siveness. 12 25 

Alterations of structural and extracellular matrix 
components occur during adipocyte differentiation. 26 32 
These changes are probably necessary for cellular reor- 
ganization and may also provide a permissive environ- 
ment for the expression of adipocyte genes, mRNA 
levels for the cytoskeletal proteins actin and tubulin 
decrease preceding the expression of adipocyte-specific 
enzymes. 26 Extracellular matrix proteins have been 
shown to influence adipose conversion. Differentiation 
of 3T3 cells is inhibited if the cells are plated on fibron- 
ectin-coated dishes. 27 Detachment or reduction of the 
interaction of cells with fibronectin may be a precondi- 
tion for differentiation, and fibronectin may interfere 
with the cytoskeletal and morphological changes neces- 
sary for the adipose conversion of 3T3-F442A cells. A 
switch in collagen gene expression occurs with a de- 
crease in type 1 and type III procollagen synthesis. Syn- 
thesis of type IV collagen, which may function as an 
adaptor in cell adhesion, increases. 28 Entactin synthesis 
increases and an unusual laminin complex that does not 
contain the typical A subunit is produced during the 
adipose conversion of 3T3-L1 cells. 31 These changes may 
be related to the loose interaction of basement mem- 
branes with adipose cells that has been observed in 
fat tissue. In addition, versican-like chondroitan sulfate 
proteoglycans, which are both cell-associated and se- 
creted into the medium, have been reported to in- 
crease. 32 These proteoglycans may permit cells to move 
and thereby allow the changes in cell shape that occur 
during adipocyte differentiation. 

Transcriptional activation of adipocyte genes 

Most recent studies focus on the transcriptional activa- 
tion of genes that encode proteins required for adipo- 
cyte function, although stabilization of mRNAs is an 
additional mechanism used during adipose conver- 
sion. 33~34 The promoters of several adipocyte genes, such 
as aFABP, adipsin, and stearoyl CoA desaturase, which 
are expressed in a differentiation-dependent manner, 
are currently being dissected. 35 44 Putative cis-acting 
DNA sequences and the factors that participate in 
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the transcriptional activation of these genes are being 
pursued. It is not known if common c/s-regulatory 
sequences are responsible for the differentiation- 
dependent expression of adipocyte genes. C/EBP, a 
bZIP family transcription factor first purified from liver 
nuclear extracts, has recently been implicated in the 
differentiation-dependent expression of some adipo- 
cyte-specific genes. 45 4~ C/EBP sites are present in the 
promoter regions of several adipocyte genes including 
adipocyte fatty acid binding protein (aP2), stearoyl CoA 
desaturase, insulin-responsive glucose transporter 
(GLUT4), and FSP27. C/EBP trans-activates these 
genes in adipocytes. Studies on aP2 gene activation 
during adipose conversion suggest that C/EBP may also 
function by displacement of a factor that binds to a 
negative element? ~-~° Premature expression of C/EBP 
as an estrogen receptor fusion protein causes early ex- 
pression of aFABP compared with its normal induction 
pattern during adipocyte differentiation? 1 Antisense 
C/EBP inhibits adipocyte gene expression and triacyl- 
glycerol accumulation. These defects are rescued when 
the cells are transfected with sense C/EBP. 52.53 More- 
over, C/EBP is transcriptionally activated early in the 
adipocyte differentiation process. 4~,~4-~' C/EBP, how- 
ever, is expressed in several tissues (liver, fat, intestine) 
and also transactivates liver-specific genes, including 
albumin and transthyretin? ',57 Moreover, its premature 
expression does not in itself induce terminal differen- 
tiation of preadipocytes. Only after the appropriate 
hormonal treatment can C/EBP accelerate the differen- 
tiation process by activating adipocyte-specific genes 
resulting in lipid accumulation. C/EBP may function by 
suppressing the cell division of preadipocytes that occurs 
before entry into the quiescent differentiated state. An 
additional complication is that studies in transgenic mice 
indicate that the proximal promoter of aFABP contains 
the C/EBP site, but is not sufficient to direct expression 
in adipose tissue. Rather, a yet unknown but differentia- 
tion-dependent factor that binds to a strong enhancer 
at - 5.2 kb upstream of the gene appears to be involved 
in aFABP expression in adipose tissue. 4~',41 

Determination of stem cells to adipocyte lineage 

The aspects of adipocyte differentiation thus far dis- 
cussed pertain to the activation of cell-type specific 
genes during the differentiation process. However, 
these studies do not provide clues as to how cells make 
the initial choice of preadipocyte fate. Little is known 
about the mechanisms or the molecules that control 
conversion of embryonic cells into determined stem cells 
capable of adipocyte differentiation. Master regulatory 
genes that govern cell-fate decisions by controlling a 
battery of other genes during development have been 
well illustrated in a variety of systems. In addition, the 
concept that one or more genes are capable of specifying 
cell lineage has been demonstrated by treatment of 
10T1/2 fibroblasts with 5-azacytidine. s8-59 The resultant 
demethylation of one or more specific loci generates 
colonies of myotubes, adipocytes, and chondrocytes. 
Recent work has determined the details of the changes 

that occur during commitment and differentiation of 
the muscle cell lineage. MyoD belongs to a family of 
myogenic genes, which are expressed only in myoblasts 
and skeletal muscle tissue, and includes MyoD, myo- 
genin, myf-5, and mrf-4-herculin. ~° Each member of the 
MyoD family has a distinct temporal expression pattern 
during embryogenesis. It has been suggested that these 
proteins may function in a cascade of regulatory 
events, a~ Gene-targeting experiments indicate possible 
redundancy of function in that null mutation of MyoD 
or myf-5 did not cause abnormal muscle formation. 62,'3 
In vitro transfection of 10T1/2 fibroblasts with MyoD 
gives rise to stable myogenic cells capable of undergoing 
muscle differentiation. Moreover, MyoD expression ac- 
tivates muscle-specific genes and is sufficient for the 
onset of the myogenic program in fibroblasts and several 
other cell types. Studies have characterized the domains 
of MyoD involved in transcriptional control, DNA- 
binding, and its interaction with other proteins. MyoD 
can also interact with Jun, which acts as a repressor for 
MyoD function, and this may explain the diversion of 
myoblasts from growth to differentiation. Moreover, 
expression of MyoD may be regulated by factors that 
communicate environmental signals. For example, pro- 
tein kinase C phosphorylates myogenin, leading to de- 
creased DNA-binding activity/'4 The identical site is 
phosphorylated by FGF, which is known to inhibit myo- 
genesis. Insulin-like growth factor-I (IGF-I) stimulates 
myogenesis of L6 cells, probably by induction of myo- 
genin, another member of the myogenic gene family. 65 

The most simple hypothesis would be that analogous 
regulatory protein(s) function in the adipocyte lineage. 
Chen at al. reported that 3T3-C2 cells, a 3T3 subline 
with a negligible adipose conversion rate, became capa- 
ble of differentiating into adipocytes when transfected 
with DNA from 3T3-F442A preadipocytes. ~' Human 
adipose tissue DNA also proved to be effective. The 
putative gene(s) responsible for this conversion have 
not been identified. A major step in the understanding 
of adipose tissue development would be to clone and 
characterize the key regulatory molecule(s) that func- 
tion in either a positive or negative manner in the adipo- 
cyte lineage. Once the identities of the key regulators 
are known, studies could examine the molecular actions 
of factors that communicate signals from neighboring 
cells or the environment to influence nuclear events 
during adipose tissue development. 

Factors that stimulate adipocyte differentiation 

The process of cell determination and differentiation is 
controlled by communication between individual cells 
or between cells and the extracellular microenviron- 
ment. Molecules that mediate this communication in- 
clude the classic diffusible growth factors that act via 
specific receptors to transduce external signals through 
a cascade of intracellular events. The variability that is 
routinely observed in the degree of adipocyte differenti- 
ation, even following clonal selection, suggests that the 
signal to differentiate may depend on as yet unidentified 
local environmental cues. The precise combination of 
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hormones and growth/differentiation factors required 
for the initiation of and progression through the adipo- 
genie program is not fully understood. Most studies 
on the role of adipogenic and anti-adipogenic factors 
employ one of the above-mentioned preadipocyte cell 
lines. Because these cell lines are already committed to 
the adipogenic lineage, such studies address only the 
process of differentiation. Cells are usually maintained 
in medium supplemented with fetal calf serum during 
growth. Identification of factors that affect adipocyte 
differentiation involves the addition of various hor- 
mones and factors and the subsequent determination 
of the extent of differentiation. This is judged by stain- 
ing for accumulated lipid, measuring activities of 
lipogenic enzymes such as glycerol-3-phosphate de- 
hydrogenase, or more recently, by the expression of 
adipocyte-specific genes. Several laboratories have de- 
veloped chemically defined media that allow adipose 
conversion. 67,6~ There are conflicting reports, however, 
on the stimulatory and inhibitory factors involved in 
adipogenesis. This is probably due to variation in culture 
conditions and differences among the type of prcadipo- 
cyte cell lines employed, each of which may represent 
different developmental stages in the adipocyte lineage. 

Green et a1.,67 71 who originally established the 3T3 
preadipocyte cell lines, showed that confluent 3T3- 
F442A cells undergo spontaneous adipose conversion 
when maintained in calf serum. Growth hormone pres- 
ent in the serum was proposed to account for the 
triggering of 3T3-F442A differentiation. These investi- 
gators also reported that IGF-I supports the selective 
limited multiplication of young, growth hormone- 
induced cells and leads to the clonal expansion of 
adipocytes. On the other hand, insulin, which is rou- 
tinely added to differentiation medium, is considered to 
only modulate the process of adipogenesis by increasing 
triacylglycerol synthesis. 72 In agreement with these 
observations, adipose conversion in serum-free media 
requires growth hormone,  even in the presence of 
IGF-I. 73 Moreover, protein kinase C activators, such 
as prostaglandin F2,,, phorbol esters, and diacylgly- 
cerol, are able to mimic the growth hormone effect, 
indicating involvement of the protein kinase C signalling 
pathway. TM 

Rubin et al., on the other hand, observed that 3T3- 
L1 cells undergo very little spontaneous differentiation 
in media that contain fetal calf serum alone, but necessi- 
tates treatment with dexamethasone and methyliso- 
butylxanthine to trigger differentiation. 2<75 These 
investigators also reported that IGF-I is an essential 
factor for adipocyte differentiation of 3T3-L1 cellsJ ~ 
Media used to demonstrate the IGF-I requirement in 
this experiment contained fetal calf serum that had been 
depleted of growth hormone, insulin, and IGF-I by 
charcoal and ion-exchange resin treatment. It is not 
known, however, what other factors normally present in 
fetal calf serum were also depleted. Studies employing 
serum-free defined media showed that adipose con- 
version of 3T3-L1 cells is dependent on IGF-I in com- 
bination with EGF,  a condition that brings about 
post-confluent mitoses, a: Adipose conversion of 3T3- 
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L1 cells in serum-free media is also dependent on the 
presence of both corticosterone and methylisobutylxan- 
thine, as is true for serum-containing media. Methyliso- 
butylxanthine may promote adipocyte conversion by 
inhibiting cAMP phosphodiesterase activity because it 
can be replaced by forskolin or cAMP analogues. This 
suggests that elevated intracellular cAMP concentration 
may be involved in the adipocyte differentiation pro- 
cess. Ailhaud et al. have described arachidonic acid as 
an adipogenic factor for ob17 cells in serum-free defined 
media. 77.7~ The arachidonic acid metabolite, prosta- 
cyclin, increases in cAMP synthesis. There is also an 
increase in intracellular Ca 2" concentration, cAMP may 
trigger adipose conversion by directly activating adipo- 
cyte genes. The AP-I site present at the proximal pro- 
moter of the aFABP gene may be responsible for the 
activation of this promoter by cAMP in confluent prcad- 
ipocytes? ~ However, AP-1 sites have not been found 
in promoters of other adipocyte genes. A clear under- 
standing of the intracellular action of either growth hor- 
mone or IGF-I in adipocyte differentiation is not yet 
available at the molecular level. Although the structure 
and ligand binding properties of both receptors are 
known, the precise signal transduction pathways are 
not. Ras proteins may mediate IGF-I signalling in 3T3- 
L1 adipocyte differentiation. Transfection of ras onco- 
genes causes differentiation of 3T3-L1 cells to adipo- 
cytes in the absence of externally added IGF-I or 
pharmacological concentrations of insulin. TM Moreover, 
transfection of a dominant inhibitory ras mutant results 
in the inhibition of differentiation. 

Although glucocorticoids are routinely added to dif- 
ferentiation media, there are conflicting reports on their 
role in preadipocyte differentiation, however, their con- 
tribution to the development of adiposity has been dem- 
onstrated in animal experiments, s° In both 3T3-LI and 
TA 1 cells dexamethasone stimulates adipose conversion 
as described above. -'~-'*' On the other hand, in 3T3- 
F442A cells, glucocorticoids inhibit adipocyte differenti- 
ation as reflected by an increase in glycerol-3-phosphate 
dehydrogenase activity and triacylglycerol accumula- 
tion. s: Experiments have not examined the molecular 
events responsible for the effects of glucocorticoid on 
adipocyte differentiation. As indicated by the generally 
accepted mechanism of steroid hormone action, gluco- 
corticoids may directly modulate transcription of regula- 
tory genes or adipocyte-specific genes via the 
glucocorticoid response element. Ailhaud et a1.,77 how- 
ever, suggest a more indirect effect of glucocorticoids. 
Corticosterone may increase arachidonic acid metabo- 
lism and thus synthesis of prostacyclin to increase cAMP 
production J 7 

Factors that inhibit adipocyte differentiation 

In addition to the adipogenic factors described in the 
previous section, serum also contains factors that sup- 
press preadipocyte differentiation. Growth factors such 
as fibroblast growth factor (FGF) and platelet-derived 
growth factor (PDGF) are inhibitory for preadipocyte 
differentiation in fetal calf serum containing media, s3-~4 
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As is the case for the function of other growth factors 
on development and differentiation, the signal transduc- 
tion pathways for these growth factors in adipose 
conversion are not clear. Nonetheless, the inhibitory 
effect of these agents on preadipocyte differentiation, 
as in other cell types, may be independent of their mito- 
genic properties. In TA1 cells, the phorbol ester 12- 
0-tetradecanoyl-phorbol-13-acetate (TPA) mimics the 
inhibition of adipocyte differentiation elicited by bFGF, 
and indicates that protein kinase C activation mediates 
the inhibitory effect. 85 FGF also extinguished adipocyte- 
specific gene expression when added to adipocytes. 
However, this effect was observed even in TPA-pre- 
treated cells and indicates maintenance of adipocyte 
differentiation in a protein kinase C-independent man- 
ner. The adipogenic effect of growth hormone on ob17 
cells in serum-free media has been reported to occur 
via the activation of protein kinase C. TM TGF-[3 blocked 
adipogenesis when 3T3-L1 or TA1 cells were exposed 
to this growth factor during the initial stages of differen- 
tiation. ~6,s7 3T3 adipose conversion, however, was not 
affected when TGF-[3 was added during later stages of 
differentiation. ~6 TGF-[3 did not affect cell proliferation. 
Rather, its inhibitory effect on adipocyte differentiation 
has been attributed to an increase in synthesis of extra- 
cellular matrix proteins such as fibronectin and collagen. 

Ringold et al. reported that tumor necrosis factor-~ 
(TNF-c~), a cytokine secreted by macrophages that 
causes cachexia in animals, inhibits conversion of TA1 
cells to adipocytes, s4 TNF-cx treatment of differentiated 
TA1 adipocytes not only caused cells to suppress expres- 
sion of adipocyte genes to their predifferentiated levels, 
but required that cells be retreated with the differentia- 
tion-accelerating agents dexamethasone and indometha- 
cin for expression of the adipocyte phenotype. These 
investigators therefore suggest that TNF-e~ may not sim- 
ply bring about a lipolytic state but may actually cause 
reversion to the preadipocyte state. At a minimum, be- 
cause it downregulates C/EBP expression, the expres- 
sion of those adipose-specific genes that contain C/EBP 
binding sites in their promoters can be suppressed by 
TNF-~.~'~.s~ The question of whether adipose differentia- 
tion is a reversible process is intriguing. It may be that 
maintenance of the differentiated state requires continu- 
ous control by both positive and negative regulators. 

Function of a unique EGF-like protein in adipocyte 
differentiation 

It has recently been shown that a novel preadipocyte 
protein containing EGF-repeats inhibits adipocyte dif- 
ferentiation?" This molecule is a member of the EGF- 
like family of proteins. These membrane-bound or se- 
creted proteins act on cell growth and differentiation in 
an astonishing array of biological settings, The distin- 
guishing feature of these proteins is the presence of at 
least one EGF-like repeat, a 35-40 amino acid motif 
characterized by the conserved spacing of six cysteine 
residues that form three disulfide bonds. ~' This motif 
was originally described for EGF. Interestingly, Serrero 

et al. reported that EGF inhibits differentiation of adi- 
pocytes both in rat primary precursor and in teratoma- 
derived adipogenic 1246 cells. 91 This inhibitory effect 
on differentiation was not linked to the proliferative 
effect of EGF. These investigators also demonstrated 
an inhibitory effect of EGF on adipose tissue develop- 
ment in the newborn rat. 92 In addition to EGF, other 
growth factor members of this family, such as trans- 
forming growth factor-ct (TGF-ct), amphiregulin, and 
heparin binding epidermal growth factor (HB-EGF), 
all bind and act through the EGF receptorY T M  Several 
multi-domain ECM proteins and cell adhesion mole- 
cules (CAMs) with demonstrated roles in cell guidance 
and development contain EGF-like motifsY 5 These in- 
clude the extracellular matrix (ECM) molecules lami- 
nin, versican, and tenascin and the selectin family of 
adhesion molecules. The importance of this motif is 
further demonstrated by its presence across many spe- 
cies, notably in the Drosophila proteins notch, with 36 
such repeats, and delta, with 9 repeats. 96-~7 The notch 
and delta genes belong to the group of neurogenic genes 
that mediate the decision between the neural and epi- 
dermal fate in cells of the neurogenic ectoderm. Lin-12 
and glp-1 also encode proteins with multiple EGF-like 
repeats that control distinct decisions between cell fates 
in the nematode C. elegans. 9~.99 The universality of this 
motif suggests that similar mechanisms may also control 
cell fate determination in vertebrates. 

Preadipocyte factor-1 (pref-1) was cloned from a 3T3- 
L1 preadipocyte library and is highly expressed in 3T3- 
L1 preadipocytes at confluence? ~ Sequence analysis 
shows that pref-1 contains a transmembrane domain 
and six EGF-like repeats (Figure 1). None of the EGF- 
like repeats in pref-1 maintain the exact spacing of ma- 
ture EGF, nor contain those residues shown to be criti- 
cal for binding to the EGF receptor.""' Overall, the 
spacing of cysteines and the conservation of other resi- 
dues is most similar to that of the Drosophila protein 
delta, a molecule known to be involved in cell fate 
determination via cell-cell interaction. Pref-1 mRNA 
is expressed at high levels in confluent 3T3-L1 pre- 
adipocytes and decreases during differentiation. It is 
not detected at all in adipocytes. Western analysis of 
membrane fractions prepared from preadipocytes and 
differentiated adipocytes indicates that pref-1 protein 
levels decrease during adipose conversion. Interest- 
ingly, Northern analysis detects pref-1 mRNA only in 
the adrenal gland, and not in liver, adipose tissue, lung, 
brain, muscle, or in other adult tissues. The absence of 
pref-1 mRNA in mature 3T3-L1 adipocytes is in accord 
with the fact that it is not detected in adult adipose 
tissue. Pref-1 is also expressed during mouse em- 
bryogenesis. The mRNA is first detected at 8.5 days of 
gestation and its level increases through 18.5 days. A 
developmental role for pref-1 is suggested by the pres- 
ence of pref-1 mRNA during embryogenesis and its very 
restricted expression in adult tissues. 

The abolition of pref-1 mRNA and protein expres- 
sion during adipocyte differentiation indicates that it 
is regulated during adipogenesis. A possible role for 
pref-1 in the control of adipocyte differentiation is indi- 
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Figure 1 Sequence alignment of EGF-life domains of pref-1. A. The six EGF-like repeats of pref-1 are shown with the first cysteine 
residue of each of the six repeats on the left. The six conserved cysteines characteristic of this protein family are boxed and shaded. 
Other amino acids conserved in this motif are boxed. B. Alignment of the pref-1 consensus EGF-like repeat with consensus sequences 
of the Drosophila homeotic proteins Notch 97 and Delta-~t of the EGF-like growth factors, EGF, mouse, 'o and TGF-a, rat~ot and of the 
LDL receptor? °3 

cated by the down-regulation of pref-1 mRNA by 
serum, an essential factor for adipose conversion, and 
by the higher levels of pref-1 mRNA in nondifferentiat- 
ing 3T3-C2 cells than in differentiation-competent 3T3- 
L1 cells (Figure 2). The role of pref-1 in adipocyte differ- 
entiation was tested by stable transfection of 3T3-LI 
cells. Cells transfected with the correct orientation of 
the pref-1 open reading frame (ORF) express higher 
levels of pref-1 mRNA than their reverse orientation 
counterparts or nontransfected controls, as shown by 
an upward expansion of the band (Figure 3). Because 
preadipocytes express high endogenous levels of pref- 
1 mRNA, the constitutively expressed form increases 
total pref-I RNA by at most 50%. Nonetheless, it is 
not the absolute level of pref-1, but rather the inability 
to down-regulate its expression that are addressed in 
this experiment. Lipid staining and levels of two RNA 
markers of adipocyte differentiation, stearoyl CoA de- 
saturase and adipocyte fatty acid binding protein, dem- 
onstrate that constitutively expressed pref-1 severely 
inhibits adipocyte differentiation. Microscopic examina- 
tion of the cultures shows a decrease in the total number 
of cells that differentiate into adipocytes, rather than a 
decrease in the amount of lipid per cell. 

While the regulation of many mRNAs whose levels 
increase during adipocyte differentiation have been 
characterized in detail, very few mRNAs that are 
down-regulated have been identified. The sole exam- 
ple is the 50% decrease in the synthesis of the cytoskel- 
etal components actin and tubulin that occurs during 
adipose conversion. 26 The down-regulation of pref-1 
during adipose conversion may reflect the fact that 
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Figure 2 Differential expression of pref-1 mRNA in cell lines and 
by serum. A. Northern analysis of pref-1 mRNA in 3T3-C2 and 
3T3-L1 cells. Ten l~gs of total RNA were subjected to Northern 
blot and probed with 32p-labeled pref-1 sequence. B. Effect of 
fetal calf serum on pref-1 mRNA level. Northern blot of 10 #g of 
RNA from 3T3-L1 preadipocytes obtained either after growth for 
2 days in 0.5% FCS, at which time (0 hr) media were changed 
to 20% FCS and cells harvested at 24 and 48 hrs. The resultant 
Northern blot was sequentially hybridized to :32P-labeled pref-1 
and actin sequences 
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Figure 3 Constitutive pref-1 expression inhibits preadipocyte differentiation. Left panel shows Northern blots of RNA prepared from four 
independent stable pools of 3T3-L1 preadipocytes transfected with either the correct; (+)1, (+)2, or the reverse; (-)1, ( - )2  orientation of 
the pref-10RF either at confluence (PRE) or 7 days following onset of the differentiation (DIFF). RNA was prepared from nontransfected 3T3- 
L1 cells after differentiation (NT). RNA was subjected to Northern blot and hybridized with 32P-labeled stearoyl CoA desaturase, pref-1, and 
adipocyte fatty acid binding protein (aP2) sequences. Right panel shows Oil Red O Lipid staining of those four stable pools of 3T3-L1 cells 
transfected with the correct (+) or the reverse orientation ( - )  of the pref-10RF. Cells underwent the differentiation protocol, and 7 days 
post-confluence cells were fixed with 10% paraformaldehyde and stained for lipid content by Oil Red O. Quadruplicate dishes of the four 
independent stable pools are shown here. 

is a protein that is simply no longer required in the 
mature adipocyte. Conversely, as indicated by the 
above-stated study, down-regulation of pref-1 may 
be required for the conversion process, either in a 
permissive or instructive manner. The blockage of 
adipocyte differentiation in cells unable to down- 
regulate constitutively expressed pref-1 argues for the 
latter hypothesis. Nevertheless, the biochemical func- 
tion of pref-1 in adipocyte differentiation remains 
unknown. However, a number of hypotheses regarding 
pref-1 function in preadipocytes is suggested by the 
demonstrated role of EGF repeats in other molecules. 
If pref-1 acts as a growth factor, then its down- 
regulation may be involved in the cessation of cell 
growth, a requirement for differentiation. The fact 
that foci of adipocytes differentiate while surrounded 
by residual preadipocytes that continue to synthesize 
pref-I suggests that the action of pref-1 is cell-autono- 
mous, or at most affects only neighboring cells. This 
argues against a diffusible form of pref-1 and to date 
the only detected form is the transmembrane molecule. 
Pref-I may also mediate cell-cell or cell-extracellular 
matrix interactions. Cell membrane components sense 
the microenvironment by cell-cell contact. These sig- 
nals are passed to the nucleus in response to the 
extracellular environmental changes and can modify 
or control the differentiation process. Several ECM 
proteins contain EGF-like repeats and may even se- 
quester soluble EGF-like proteins. Pref-1 may main- 

tain the preadipocyte phenotype via the interaction 
of its EGF-like repeats with the EGF-like repeats of 
proteins on adjacent preadipocytes or ECM compo- 
nents. The determination of the molecular basis of 
pref-1 function will lead to a better understanding of 
adipose tissue development, a process for which critical 
regulatory genes have yet to be identified and charac- 
terized. 

Conclusions 

Adipose cell differentiation is probably the result of 
a cascade of intracellular events, possibly involving a 
hierarchy of regulatory genes that ultimately determine 
the expression pattern of genes characteristic of adipo- 
genesis. The major step in understanding adipose tissue 
development involves the identification of regulatory 
genes for the adipose cell lineages. Unique adipocyte 
regulatory genes may function along with more general 
regulatory gene(s), such as C/EBP, in the expression 
of complex patterns of adipocyte-specific genes. These 
molecules may be regulated in concentration or by post- 
translational modification. Multiple positive and nega- 
tive factors, which communicate information from the 
extracellular environment to nucleus, may be involved. 
Adipose tissue development will be fully understood 
when the integration of these multiple signals are eluci- 
dated at the molecular level. 
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